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Abstract
We study the quantum energy of the Z-string in 2+1 dimensions using the
phase shift formalism. Our main interest is the question of stability of a
Z-string carrying a finite fermion number.

PACS numbers: 03.65.Sq, 03.70+k, 05.45.Yv, 11.27.+d

1. Introduction and motivation

Z-strings were first discovered as solutions of the classical field equations of the electroweak
model by Nambu [1] in the context of bound pairs of magnetic monopoles. Later on they were
rediscovered—as independent objects in their own right—by Vachaspati [2].

The main point under investigation in our study of Z-strings is their stability. If they
are stable, they would be relevant for a variety of reasons: first of all, they would be the first
solitonic objects in the Standard Model to be found; given the importance and ubiquitousness
of solitonic objects in effective field theories in general it is surprising that they seem to play
no role in the Standard Model. A second observation that might make them relevant is an
alternative scenario of (electroweak) baryogenesis proposed by Brandenberger et al [3]. The
presence of networks made from Z-strings would make the requirement (for baryogenesis to
happen at the electroweak transition) of a first-order electroweak phase transition obsolete.
This is an attractive scenario since the electroweak transition is known not to be of first order. A
third reason for studying their stability is that—since Z-strings end in magnetic monopoles—
they might contribute to the primordial magnetic field. For a general overview of applications
and properties of Z-strings along with a large collection of references, cf [4].

The structure of this paper is as follows: in section 2, we briefly discuss the notion of
stability in the presence of a conserved quantum number. Then, in section 3, we discuss
the model under consideration, our method for computing the fermion determinant and some
thoughts necessary to choose parameters properly in the (D = 2+1)-dimensional theory. In
section 4, we present the gauge and Higgs field ansätze used for computing the fermion
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determinant. Then, in section 5, we present the (preliminary) results available at the time
of the QFEXT’05 conference. In section 6, we present an outlook and some (preliminary)
conclusions.

2. Stability

The question of stability is of prime importance in gauging the importance of Z-strings. At
this point one should keep in mind that the Standard Model does not provide a topological
stabilization mechanism for string-like objects, unlike e.g. the Abelian Higgs model. Hence
every extended object has to be stable on energetic grounds. In the purely bosonic, classical
sector of the electroweak model, Z-strings are solutions of the classical equations of motion.
But these solutions represent only a saddle point of the classical energy functional and not a
minimum. Hence, the Z-strings can decay, e.g. by condensation of φ+ or W bosons along the
string—so long as the value of the weak angle is close enough to its physical value; in the
unphysical region sin �w > 0.9 the Z-string actually is—classically—stable. These issues
are discussed in depth and detail in the excellent review [4]. If one considers fermions in
addition to the bosonic sector of the electroweak model, one finds that the Z-string actually
binds fermions to its core, some of them rather tightly [4]. Hence, one can investigate a new
kind of stability [5]: one can compare the total energy of the Z-string plus N bound fermions
to the energy of N free fermions. If it is less, one has certainly found an interesting object,
since even if the configuration under investigation decays further, it cannot simply decay to
the vacuum (as it might in the absence of occupied bound states) since the fermion number is
conserved and it has already been established that a configuration exists with energy below N
times the free fermion number. However, if one wants to consider the bound-state energy of
fermions one also has to take into account the fermion determinant, since it arises at the same
order of an h̄ (loop) expansion as the fermion bound-state energy. Thus the quantity which
we consider in this paper is the difference �E(N) between the Z-string energy including the
energy of N bound fermions and the energy of N free fermions:

�E(N) = Eclass(Z-string) + Evac(Z-string) +
N∑

j=1

(∣∣ωb.s.
j

∣∣ − m
)
. (1)

Here Eclass denotes the classical (bosonic) energy, Evac denotes the renormalized vacuum
polarization energy originating from the fermion determinant including effects of the
counterterms and ωb.s.

j denote the bound-state energies. The sum runs over the occupied
levels only. The fermion number of the Z-string is N.

3. Technical prerequisites

The model we consider for our computations differs in some respects from the full electroweak
model. First of all, we consider our fermionic weak iso-doublets to be degenerated in mass.
This is the most serious of our simplifications and cannot easily be gotten rid of, since without
the isospin symmetry the problem does not have enough symmetry to allow a partial wave
decomposition which is at the heart of our approach to computing the fermion determinant1.
As a second simplification, we drop the hypercharge field from our consideration and only
consider the SU(2) gauge field. This seems to be an innocuous simplification and we have
techniques to deal with the U(1) field. A third simplification that is used only to simplify the

1 This channel decomposition also applies to the bound state part of the spectrum. In each channel we have a finite
number of bound states which can be determined using e.g. a shooting method.
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algebra is the restriction of our fermionic sector to one weak iso-doublet. The fourth and final
simplification is that we consider the model in D = 2+1 dimensions2. Obviously, calculations
in D = 2+1 are much simpler than in D = 3+1 due to the simplified UV divergence structure.
And since this is only an exploratory investigation—to see whether it is worthwhile to do the
vastly more complicated calculation in D = 3+1—it seems sensible to keep things simple
where possible. But if there was no connection between results in D = 2+1 and D = 3+1,
this investigation could not fulfil its purpose. Fortunately there is some evidence that the
behaviour of energies and energy densities of string-like objects in D = 2+1 can be a good
guide to the behaviour of energies (per unit length) and energy densities in D = 3+1. In our
investigation of electromagnetic flux tubes [6, 7], we have learned that—given that the same
renormalization conditions are used in D = 2+1 and D = 3+1—the renormalized quantum
energies are indeed very similar in their functional dependence on widths and fluxes. We use
as a working hypothesis that the same is true in the electroweak model.

The techniques used for expressing the vacuum polarization energy (which is related
to the fermion determinant by dividing out the time interval T for which the determinant is
evaluated) in terms of phase shifts from an associated scattering problem have been described
extensively in [8] and shall be outlined here only briefly. The vacuum polarization energy
can be renormalized effectively by realizing that if one replaces the full phase shifts by their
Born approximation (of nth order) one gets the same result as by restricting the full one-loop
vacuum polarization energy to the sum of Feynman diagrams with n external insertions of the
background fields. Hence, in D = 2+1, the vacuum polarization energy is given by

Evac = −1

2

∑
b.s.

(∣∣ωb.s.
j

∣∣ − m
) − 1

2

∫
dk

(√
k2 + m2 − m

)∑
M

1

π

d

dk

[
δM −

N∑
n=1

δ
(n)
M

]

+
N∑

n=1

E
(n)
FD + ECT, (2)

where ωb.s.
j denotes the fermion bound-state energies3, δM the (full) phase shift in angular

momentum channel M, δ
(n)
M its nth Born approximation; E

(n)
FD is the energy contribution

computed from Feynman diagrams with n external legs and ECT is the energy resulting
from the counterterms4. Note that both the k integral on the one hand and the sum of
Feynman diagrams plus counterterms on the other hand are separately finite. This in particular
distinguishes our investigation from the first computation of the fermion determinant in the
background of a Z-string performed by Groves et al [10] where determinant and counterterms
were individually divergent functions of the (proper-time) cut-off parameter and a finite result
was only obtained by combining these two quantities. Alas, they are known only numerically,
hence this procedure is numerically not stable. The other difference is that we focus on
occupying bound states, whereas Groves et al were mainly concerned with computing the
fermion determinant.

A last topic that merits discussion here is the question of how to choose the parameters
of our model. In 3+1 dimensions, the gauge, Yukawa, Higgs self-coupling and vacuum
expectation value of the Higgs field can be straightforwardly expressed using the fermion
mass, the Higgs mass, the tree-level mass of the W boson (the W boson mass at one-loop level
is a prediction based on the tree-level mass because of our choice of renormalization conditions)

2 Nonetheless we use Dirac four-spinors to describe the fermions in our theory.
3 The bound-state energies are determined from the first-order form of the Dirac equation.
4 The calculation of the vacuum polarization energy per unit length in D = 3+1 uses the same phase shifts, Born
approximations and bound-state energies but different kinematical factors [9]. Of course, also Feynman diagram and
counterterm contributions are different.
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and the Fermi coupling GF . In 2+1 dimensions, the masses can be unambiguously re-used;
however, it is not entirely obvious how to choose the Fermi coupling. It is ultimately related
to a cross section—a concept that would need some translation into two spatial dimensions.

The aim of our (2+1)-dimensional calculation is to be a guide to a full (3+1)-dimensional
calculation. For the vacuum polarization energy, we have assured this by using the same
renormalization conditions as we would use in a D = 3+1 calculation.

We now fix the parameters in such a way that this is also true for the classical energy: in
D = 2+1 we compute an energy E2+1

class, but in D = 3+1 we compute an energy per unit length,
E3+1

class

/
L. Hence, we require

E2+1
class = E3+1

class

L
× fundamental length, (3)

where the fundamental length is given by half the Compton wavelength of the fermion we
integrate out. This makes sense from a physical perspective, since the fermion integrated out
sets the scale beyond which spatial structures can no longer be resolved. Hence a volume of
thickness half the Compton wavelength of this fermion is ‘perceived’ as a surface. Also in
the QED flux tube computations a relative factor of π/m appeared between the (D = 2+1)-
dimensional energies and (D = 3+1)-dimensional energies per unit length. This prescription
now allows us to express the model parameters in terms of the physical parameters of the
theory in D = 3+1. The question on how to choose an appropriate GF in D = 2+1 can thus
be avoided.

4. Z-strings

We compute the vacuum polarization energy for Higgs and gauge field configurations of a
specific form5

φ =
(

φ+

φ0

)
= v

(−ifH (ρ) cos ξ1 + fP (ρ)

fH (ρ) sin ξ1 eiϕ

)
,

(4)
g �W 3 = ϕ̂

ρ
2fG(ρ) sin2 ξ1,

g√
2

�W + = iϕ̂

2ρ
e−iϕfG(ρ) sin 2ξ1.

Here ρ denotes the two-dimensional radius, ρ =
√

x2 + y2, and ϕ̂ is the unit vector in the
azimuthal direction. The Higgs vacuum expectation value is given by v. The gauge coupling
is given by g. The functions fH (ρ), fP (ρ) and fG(ρ) are profile functions and are discussed
in the remainder of this section. The requirement of finite classical energy necessitates for
ρ → 0 both fH → 0 and fG → 0. For ρ → ∞, fG → 1 and φ†φ = |fH |2 + |fP |2 → 1
are required. As ξ1 is changed from π

2 to 0 the configuration is changed continuously from
the Z-string to a purely scalar configuration without winding. Note that in this process the
gauge invariant length φ†φ of the Higgs field does not change since it is independent of ξ1.
The classical energy is a continuous function of ξ1 which—for fP ≡ 0—has a maximum at
ξ1 = π/2 and decreases continuously as ξ1 → 0. This illustrates our earlier statement that the
Z-string is classically unstable and can unwind without hitting a topological barrier.

The ansatz shown in (4) is a subset of a more general ansatz called the sphaleron square,
cf also [11].

5 In the absence of the hypercharge field, the Z-field reduces to the W 3-field. �W+ is the conventional charged W

field, φ0 denotes the neutral Higgs field and φ+ the charged Higgs field.
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Figure 1. The left panel shows the (completely renormalized) vacuum polarization energy as a
function of the width wH , the right panel shows the energy gained by filling bound-state levels
relative to the same number of free fermions,

∑N
j=1(|ωb.s.

j |−m) for N = 5, 10, 20 and all available
bound states. Note that this latter curve corresponds to comparing configurations with different
fermion number.

For our numerical investigations we cannot deal with general profile functions, but rather
need also ansätze for the functions that have the proper behaviour for small and large ρ:

fH (ρ) = 1 − e− ρ

wH , fP (ρ) = aP e− ρ

wP , fG(ρ) = 1 − e
− ρ2

w2
G . (5)

Altogether we have four parameters (plus ξ1): three widths wH,wG,wP and one amplitude
aP —the amplitudes for fH , fG are fixed by requirements of finite classical energy mentioned
above.

5. Results

In this section we present a couple of preliminary results for classical, vacuum polarization
and bound-state energies. The plots in figures 1–3 have in common that we have fixed ξ1 = π

2 ,
i.e. we present results for the Z-string configuration.

Couplings and Higgs vacuum expectation value are determined by our choice of masses
and the Fermi coupling. We choose for the fermion mass 170 GeV, for the Higgs mass
115 GeV, for the tree-level W boson mass 80 GeV and for the Fermi coupling 10−5 GeV−2.

When studying the plots the following point has to be kept in mind: since ξ1 is fixed, we
have a four-parameter numerical problem. The plots are only standard two-dimensional plots;
hence energies can only be plotted as a function of a single variable. We have chosen NOT
to fix the other parameter values but plot the energies of all the configurations that we have
available. Hence, for each observable there is not a curve but a band corresponding to the
ranges of the variables not represented on the x-axis of the plot. In figure 1 we show in the left
panel the renormalized vacuum polarization energy (in units of the fermion mass) including
Feynman diagrams and counterterm contributions as a function of the width of the neutral
Higgs field, wH . This seems to be the predominant dependence. The contents of the right
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-20

0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6

classical energy
bound state energy

one-loop contribution

wH

Figure 2. The figure shows the classical energies (upper band of points), vacuum polarization
energies (denoted by ‘one-loop contributions’, medium band of points) and �Eb.s.(all) (lower
band of points) as a function of the width wH .

panel are slightly more difficult to explain: in (1) only one part of �E(N) depends on the
fermion number of the configuration, namely

�Eb.s.(N) =
N∑

j=1

(∣∣ωb.s.
j

∣∣ − m
)
. (6)

Since we look for a stable object we restrict our choice of bound states in (6) to the most
strongly bound states. In the right panel of figure 1 we now plot �Eb.s.(N) for N = 5, 10
and 20. For the lowest curve we occupy all available bound states, denoted in the following
as �Eb.s.(all). Thus, points along this curve can and will correspond to different fermion
numbers. Whereas the curves with fixed fermion number level off as wH increases, this latter
curve keeps decreasing as wH increases. This is due to an amazing proliferation of bound
states. Whereas for wH ≈ 2 there is only a handful of bound states, for wH ≈ 6 there can
be easily more than 80 bound states. The dependence of the number of bound states seems
to be roughly quadratic—as wH increases, both more and more angular momentum channels
contain bound states and the number in each individual channel keeps increasing as well.
More recent investigations, performed after QFEXT’05, show that this behaviour continues at
least up to widths wH ≈ 12. In this parameter regime, we have found configurations with
around 500 bound states in various angular momentum channels.

In figure 2, we plot the classical energy, the vacuum polarization energy and �Eb.s.(all).
This figure clearly shows the different orders of magnitude that are involved. Furthermore, it
can be clearly seen that the effect of populating bound states by far outweighs the increase in
energy due to taking into account the fermion determinant.

When combining the classical energy with the vacuum polarization energy and �Eb.s.(N)

to form �E(N), one has to keep in mind that the fermions—in contrast to the bosons
in this model—carry a colour quantum number and that fermions with different colours are
energetically degenerate. Hence, both Evac and �Eb.s.(N) have to be multiplied by the number
of colours NC before they are added to Eclass. The fermion number under consideration then
is actually N × NC .
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Figure 3. In this figure, we present our results for �E(N) as a function of the width wH for
different values of N, from left to right N = 10, 30, 50. The actual fermion numbers are (again
from left to right) 90, 270, 450.

In figure 3, we use NC = 9. In the left panel of figure 3 we have filled the ten most
strongly bound states. We find a minimum, but since we plot �E this minimum has to be
below zero to indicate a stable object. So for both N = 10 and N = 30 (panel in the middle)
the object under consideration is not stable. The situation is different for N = 50, since the
minimum there is clearly below zero. Since N does not include the colour degeneracy this
stable object actually carries fermion number 450.

Also, a certain pattern seems to emerge from figure 3: as N increases, the minimum
of �E(N) moves towards larger values of wH and the value of �E(N) at the minimum
decreases. This is of course due to the fact that the larger wH the more actual bound states are
available and hence the possible gain in energy by filling these bound states also increases. It
may even be possible that for sufficiently large wH , the energy gain is large enough to allow
a stable object even for NC = 3 to exist, but this is a question under current investigation and
cannot be answered at the moment.

A different investigation—results will have to be reported elsewhere—considers a heavy
fermion with masses around 1.5 TeV instead of the top quark mass used here.

6. Conclusions

For this contribution only preliminary data were available. Nevertheless we can state that—
given a sufficient number of colours—we have found a very interesting object that is stable
in the sense of section 2. It is very large and carries a gigantic fermion number (450). At
the moment it is not clear what happens if we increase the size of the object further—will we
find so many bound states that maybe it is possible to find a stable object even for NC = 3?
Therefore an in-depth investigation of the parameter space is urgently needed, and is already
under way [12]. Also, the great effort to investigate the D = 3+1 case is now fully justified.
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interesting conversations. Also, I would like to thank the Plymouth Particle Theory Group for
stimulating discussions. Some parts of the calculation have been simplified tremendously by
FORM [13] and Mathematica [14]. This project has been supported in part by the Deutsche
Forschungsgemeinschaft under contract Schr 749/1-1 and the Particle Physics and Astronomy
Research Council.

References

[1] Nambu Y 1977 String-like configurations in the Weinberg–Salam theory Nucl. Phys. B 130 505
[2] Vachaspati T 1992 Vortex solutions in the Weinberg–Salam model Phys. Rev. Lett. 68 1977–80

Vachaspati T 1992 Vortex solutions in the Weinberg–Salam model Phys. Rev. Lett. 69 216 (erratum)
[3] Brandenberger R H and Davis A-C 1993 Electroweak baryogenesis with electroweak strings Phys. Lett.

B 308 79–84
[4] Achucarro A and Vachaspati T 2000 Semilocal and electroweak strings Phys. Rep. 327 347–426
[5] Khemani V 2003 Quantum solitons in the electroweak theory Talk given at QFEXT’03 (Preprint hep-th/

03120249)
[6] Graham N, Khemani V, Quandt M, Schroeder O and Weigel H 2005 Quantum QED flux tubes in 2+1 and 3+1

dimensions Nucl. Phys. B 707 233–77
[7] Weigel H 2006 Energies of quantum QED flux tubes J. Phys. A: Math. Gen. 39 6799
[8] Graham N, Jaffe R L and Weigel H 2002 Casimir effects in renormalizable quantum field theories Int. J. Mod.

Phys. A 17 846–69
[9] Graham N, Jaffe R L, Quandt M and Weigel H 2001 Quantum energies of interfaces Phys. Rev. Lett. 87 131601

[10] Groves M and Perkins W B 2000 The dirac sea contribution to the energy of an electroweak string Nucl. Phys.
B 573 449–500

[11] Klinkhamer F R and Olesen P 1994 A new perspective on electroweak strings Nucl. Phys. B 422 227–36
[12] Graham N, Khemani V, Quandt M, Schroeder O and Weigel H in preparation
[13] Vermaseren J A M 2000 New features of FORM Preprint math-ph/0010025
[14] Wolfram Research Inc. Mathematica (Champaign, IL)

http://dx.doi.org/10.1016/0550-3213(77)90252-8
http://dx.doi.org/10.1103/PhysRevLett.68.1977
http://dx.doi.org/10.1103/PhysRevLett.69.216.2
http://dx.doi.org/10.1016/0370-2693(93)90604-G
http://dx.doi.org/10.1016/S0370-1573(99)00103-9
http://www.arxiv.org/abs/hep-th$/$
http://www.arxiv.org/abs/03120249
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.057
http://dx.doi.org/10.1142/S0217751X02010224
http://dx.doi.org/10.1103/PhysRevLett.87.131601
http://dx.doi.org/10.1016/S0550-3213(99)00831-7
http://dx.doi.org/10.1016/0550-3213(94)00116-2
http://www.arxiv.org/abs/math-ph$/$0010025

	1. Introduction and motivation 
	2. Stability
	3. Technical prerequisites
	4. Z-strings 
	5. Results 
	6. Conclusions 
	Acknowledgments
	References

